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This review is built around what is probably the best known estimation example, estimating the 
mean of a distribution with randomly sampled data drawn from that unknown distribution.  We 
will first walk through the example, and then address more general estimation issues/topics. 

We start with a well-known estimation problem. 

 
Estimating the population mean 

1. Consider some population with a distribution of, say, heights, characterized by the random 
variable Y .  The mean, µ , and variance, 2σ , of Y are unknown.  You want to estimate µ , 
the average height in the population. 

 
Random sampling, estimators and estimates 

2. Sample independently n times from this population and use the data to estimate the unknown 
mean. 

3. Before the data are observed (ex ante), each observation is a random variable with a value yet 
to be determined.  After the data are observed, observations are, well, data points…  sample 
outcomes to be used to generate estimates. 

4. Estimators, ex ante:  Each of the n independent random draws from the distribution Y , is 
itself a random variable, iY .1  Given the nature of the sampling process, the iY ’s are iid 
(independently and identically distributed) with distribution Y . 

a. A point estimator of µ  will be some function of the observed values of the iY ’s, and will 
accordingly, be a random variable, ex ante.  Accordingly, you can think of estimators as 
rules, which assign different estimates to different drawn samples. 

                                                 
1 Recall that we use upper case letter to denote random variables and lower case letters to denote the actual sample 
values. 
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5. Estimates, ex post: After we have the sample data { }1 2, , ... , ny y y , the actual estimate will 
be the value of the point estimator for the given set of drawn values. 

6. Example:  The Sample Mean:  Probably the best known point estimator is the sample mean, 
in which the rule is that you simply average the sample observations. 

a. ex ante, the sample mean estimator is a random variable, which can take on different 
values with different probabilities, reflecting the random nature of the sampling process:  

1 2
1( , , ..., )n iM Y Y Y Y Y
n

= = ∑ . 

b. ex post, and after the sample data are drawn, the sample mean estimator provides us with 

a point estimate of the unknown mean of the distribution:  1 2
1( , , ..., )n iM y y y y y
n

= = ∑ . 

 
Linear and unbiased estimators (LUEs) 

7. We often look first at linear estimators… because they are relatively simple to work with, 
and often a useful approximation to more complicated functional forms. 

8. Linear:  Given the randomly sampled data, linear estimators (remember, they are random 
variables) will have a general linear functional form: 

0 1 1 2 2 ... n nM Y Y Yβ β β β= + + + + . 

9. Unbiased:  This linear estimator will be unbiased if ( )E M µ= , which is to say, the expected 
value of the estimator is the true mean, µ . 

a. Even though we don’t know the true mean µ , we can often determine whether or not an 
estimator of µ  is in fact biased or not. 

10. LUEs:  If an estimator is linear and unbiased, we call it a Linear Unbiased Estimator (LUE).  
Surprise! 

11. ex post:  For the actual drawn sample { }1 2, , ... , ny y y , the particular linear estimate m  will 
be  0 1 1 2 2 ... n nm y y yβ β β β= + + + + . 

a. m  may or may not be close to µ   … but on average, estimates generated in this fashion 
will equal µ  if M  is an unbiased estimator of µ . 

12. Since the iY ’s are all iid with distribution Y , each iY  has mean µ , and so the expected value 
of M  is:   

0 1 2 0 0( ) ... n i iE M β β µ β µ β µ β β µ β µ β= + + + + = + = +∑ ∑ . 

13. Since we are focused on linear unbiased estimators ofµ ... we only want to consider { }iβ  

that satisfy 0 iβ µ β µ+ =∑ , irrespective of what the particular value of µ  happens to be. 
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14. Since 0 iβ µ β µ+ =∑  for all µ , if you differentiate both sides with respect to µ , you find 
that for the linear estimator to always be unbiased, we require that  

0 0β =  and 
1

1
n

i
i
β

=

=∑  

(the intercept term must be 0 and the slope coefficients must sum to 1;  you can think of 
the slope coefficients as weights since they sum to one… but they do not have to be non-
negative). 

15. So if we restrict attention to the set (or class) of linear unbiased estimators of µ , we are 
considering only estimators of the form: 

1 1 2 2 ... n nM Y Y Yβ β β= + + + , where 
1

1
n

i
i
β

=

=∑ . 

16. This defines the class of LUEs (Linear Unbiased Estimators) for our estimation problem. 

 
Variance of LUEs 

17. Consider the linear unbiased estimator M  just defined.  Since the iY ’s are pairwise 
independent, ( , ) 0i jCov Y Y for i j= ≠ , and the variance of the sum is the sum of the 
variances.  And so, 2 2 2

1 1 2 2( ) ( ) ( ) ... ( )n nVar M Var Y Var Y Var Yβ β β= + + + . 

18. And since 2( )iVar Y σ=  for each i,  
22( ) iVar M σ β= ∑ … which will vary, depending on the iβ 's. 

 
Best Linear Unbiased Estimators (BLUE) 
 

19. BLUE I:  Introduction and some examples 
a. The Best Linear Unbiased Estimator will be the estimator in the class of LUEs that has 

minimum variance. 

b. So we want to consider all linear estimators of the form  

1 1 2 2 ... n nM Y Y Yβ β β= + + + , where 
1

1
n

i
i
β

=

=∑  , 

and find the particular set of { }iβ  that minimizes the variance within this group/class of 
estimators. 

c. Here are some unbiased estimators… unbiased, since the weights sum to one.   

Which one do you prefer? 
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i. 1 1M Y= :  1( )E M µ=  and 2
1( )Var M σ=  

ii. 2.1 1 2.5 .5M Y Y= + :  2.1( )E M µ=  and 
2 2 2 2 2 2

2.1
2( ) .5 .5 / 2
4

Var M σ σ σ σ= + = =  

iii. 2.2 1 2(1 )M Y Yβ β= + −  (Figure left):   

2.2( )E M µ=  and 2 2 2 2
2.2( ) (1 )Var M β σ β σ= + −  

{ }2 2 2(1 )σ β β= + −  

1. So to minimize 2.2( )Var M ,  

set .5β = . 

iv. 3.1 1 2 3(1/ 3) (1/ 3) (1/ 3)M Y Y Y= + + :  3.1( )E M µ=  and 
2 2 2 2 2 2

3.1( ) (1/ 3) (1/ 3) (1/ 3)Var M σ σ σ= + + 2 23 / 3
9
σ σ= =  

v. And so forth…. Here’s what the distributions of the equally weighted sample means 
(with different sample sizes… so 1 2.1 3.1, , ...M M M  ) look like…. Assuming 

(0,1)Y N : 

 

 
 

As the sample size increases, the distribution of the sample mean becomes more and 
more tightly concentrated around the true unknown mean, µ  . 
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20. BLUE II:  The optimization problem 

a. To find the BLUE estimator of the unknown mean µ , we need to solve the following 
optimization problem: 

min 22( ) iVar M σ β= ∑  subject to 
1

1
n

i
i
β

=

=∑ . 

b. This well-studied optimization problem is 
called a Quadratic Programming (QP) problem… 
and features a quadratic objective function, 

22( ) iVar M σ β= ∑ , and a linear constraint, 

1
1

n

i
i
β

=

=∑ .  As shown in the diagram for the  two-

dimensional case, the level curves of the objective 
function are concentric circles centered around 
the origin.  So the goal is to be on the concentric 
circle closest to the origin, while also satisfying 

the linear constraint that 
1

1
n

i
i
β

=

=∑ .  As you can 

see, the solution will typically occur at a point of 
tangency between the smallest achievable concentric circle and the linear constraint. 

c. Not surprisingly, there are many ways to solve this QP problem…  probably the easiest is 
to just incorporate the constraint into the objective function. 

d. The constraint requires that 
1

1
n

i
i
β

=

=∑ , or put differently, that 
1

1
1

n

n i
i

β β
−

=

= −∑  (note that the 

summation runs from 1 to n-1.  If we incorporate the constraint in the objective function, 
then we have a new (unconstrained) optimization problem: 

min 
21 1 1

2 2 2 2 2 2

1 1 1
( ) 1

n n n

i n i i
i i i

Var M σ β σ β σ β β
− − −

= = =

   = + = + −  
   

∑ ∑ ∑ . 

e. We can solve this with n-1 FOCs (First Order Conditions): 

For 1, ... , 1:j n= −  min 
1

2

1
( ) 2 2 1 ( 1) 0

n

j i
ij

Var M σ β β
β

−

=

 ∂  
= + − − =  ∂   

∑ , or

1
* *

1
1

n

j i
i

β β
−

=

 
= − 
 
∑ . 

f. Since the RHS of the last expression doesn't depend on j, the *
jβ 's are all the same.  Call 

their common value *β . 
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g. The from the last expression we have: 
1

* * *

1
1 1 ( 1)

n

i
nβ β β

−

=

 
= − = − − 
 
∑ , or * 1nβ =  or 

* 1 1, ..., 1i for i n
n

β = = − .  And since 
1

* *

1
1

n

n i
i

β β
−

=

= −∑ , * 1
n n

β =  as well. 

h. But then M is just the Sample Mean:  1
iM Y Y

n
= = ∑ .   

i. Or put differently, The Sample Mean is BLUE! 

 

21. BLUE III:  Wrapup 
a. BLUE:  Since the Sample Mean is unbiased and has 

minimum variance in the class of LUE's, it is a BLUE…  
the best (minimum variance) estimator in the class of 
linear unbiased estimators (LUE’s). 

i. Notice that this result holds, even if we don't know 
the actual value of 2σ .   

ii. Also notice that this holds for any distribution (we 
haven't yet said anything about the particular 
distribution of Y ). 

b. Your sample:  For a particular sample { }1 2, , ... , ny y y , 1
im y y

n
= = ∑  may or may not 

be close to µ   … but on average, estimates generated in this fashion will equal µ , since 
M Y=  is an unbiased estimator of µ . 

i. The Sample Mean estimator, 1
iM Y Y

n
= = ∑ , is a random variable, taking on 

different values with different probabilities depending on the actual drawn sample.  
The distribution of M is called a sampling distribution.   

c. Review: 

i. (ex ante) Estimators are random variables, taking on different values depending on 
the drawn sample. 

ii. (ex post) Estimates are numbers, the value of the estimator for our particular drawn 
sample (set of observations). 

iii. We bless estimates not because we know them to be specifically praiseworthy, but 
rather because we praise the process/rule/estimator that generated the estimate.  Or 
put differently:  We can say something about the quality of estimator… but we don’t 
have much to say about the quality of specific estimates, unless of course, we know 
something about the representativeness of our sample. 
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As promised, we now turn to more general estimation topics. 

 
More generally:  Estimators, unbiasedness, efficiency and interval estimators  

22. Estimators: 

a. Suppose that you have an iid random sample { }1 2, , nY Y Y  from the distribution, Y, and 
you want to use this data to estimate some unknown parameter of the distribution, θ .  A 
point estimator will be a function of the 'iY s , say ( )1 2, , nW h Y Y Y=  , and will itself be 
a random variable (taking on different values with different probabilities). 

23. Unbiasedness: 

a. An estimator is unbiased if, on average, it’s right…  or more formally, if it’s expected 
value is the true value of the parameter.  ( )E W θ= . 

i. We’ve shown above that the Sample Mean is an unbiased estimator of the true mean, 
µ . 

ii. The bias of the estimator is the difference between its expectation and the true value 
of the unknown parameter: ( ) ( )Bias W E W θ= − . 

24. Efficiency of (unbiased) estimators 

a. Consider two unbiased estimators of θ , 1W  and 2W  .  Then 1W  is more efficient than 2W  
if for every parameter value θ , 1 2( ) ( )Var W Var W≤ , and for at least one value of θ , 

1 2( ) ( )Var W Var W<  (so 1W  never has higher variance than 2W ). 

b. Why restrict to unbiased estimators?  Otherwise, it’s easy to find (really bad) estimators 
with zero variance.  For example, spoze that my estimator of θ  is 1 7W = .  My crummy 
stupid estimator of course has nothing to do with θ , but it does have zero variance! 

25. Confidence intervals as interval estimators 
a. So far we have focused on point estimators, which provide a single (point) estimate of the 

unknown parameter.  Alternatively, we could work with interval estimators, for which 
estimates are intervals (a range of values) rather than points (specific values).  The most 
common interval estimator is the Confidence Interval: 

b. Consider the point estimator ( )1 2, , nL l Y Y Y=   for the lower bound of the confidence 

interval and ( )1 2, , nU u Y Y Y=   for its upper bound.  L and U are both random variables, 
taking on different values depending on the drawn sample. 

i. The randomly generated confidence interval [L,U] will be an interval estimator, 
where L and U are the values of the interval endpoints. 

ii. Note that if it’s the case that 95% of the time, intervals generated in this fashion 
contain the true mean µ , then we say that we have a 95% Confidence Interval 
(estimator) for µ . 
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Some common estimators:  Sample statistics as estimators 

26. Mean:  The sample mean, 1
iY Y

n
= ∑ ,  is an unbiased estimator (in fact, it’s BLUE) of the 

mean of Y, µ  .  ( ) ( )E Y E Y µ= = . 

a. The particular estimated sample mean is 1
iy y

n
= ∑ . 

27. Variance:  The sample variance, 2 21 ( )
1YY Y iS S Y Y

n
= = −

− ∑ ,  is an unbiased estimator of 

the variance of Y, 2σ , when the mean of Y is unknown:  2( ) ( )YYE S Var Y σ= = .2   

a. The particular estimated sample variance is 2 21 ( )
1yy y iS S y y

n
= = −

− ∑ . 

28. Standard deviation: The sample standard deviation is the square root of the sample 

variance, Y YYS S=  21 ( )
1 iY Y

n
= −

− ∑ .  It is generally a biased estimator of the Standard 

Deviation of Y, Yσ , since in general, the expected value of the square root of something is 
not equal to the square root of the expected value of that something. … But that fact doesn’t 
stop us from using it! 

a. The particular estimated standard deviation is 21 ( )
1y iS y y

n
= −

− ∑ . 

29. Covariance:  The sample covariance, 1 ( )( )
1XY i iS X X Y Y

n
= − −

− ∑ , is an unbiased 

estimator of the Covariance of X and Y, ( ) ( , )XY XYE S Cov X Y σ= = , when the means of X 
and Y ( X Yandµ µ ) are unknown. 

a. The particular estimated sample covariance is 1 ( )( )
1xy i iS x x y y

n
= − −

− ∑ . 

30. Correlation:  The sample correlation estimator, XY
XY

X Y

S
S S

ρ = , is generally a biased estimator 

of the correlation of X and Y, ( , ) XY
XY

X Y

corr X Y
σ

ρ
σ σ

= = . 

a. The particular estimated sample correlation is xy
xy

x y

S
S S

ρ = . 

 

                                                 
2 We divide by n-1 to generate an unbiased estimator.  There are circumstances under which you might want to 
divide by n, or even n+1  … but with large samples, the consequential differences are typically quite small. 


